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Abstract

The US Environmental Protection Agency identifies that urban heat islands can1

negatively impact a community’s environment and quality of life. Using low cost2

urban sensing networks, it is possible to measure the impacts of mitigation strategies3

in communities at a fine-grained scale, informing context-aware policies and4

infrastructure design. However, fine-grained city-scale data analysis is complicated5

by common, tedious data cleaning tasks such as removing outliers and imputing6

missing data. To address the challenge of data cleaning, this article introduces a7

robust low-rank tensor factorization method to automatically correct anomalies8

and impute missing entries for high-dimensional urban environmental datasets. We9

validate the method on a synthetically degraded National Oceanic and Atmospheric10

Administration temperature dataset, with a recovery error of 4%, and apply it to11

the Array of Things city-scale sensor network in Chicago, IL.12

1 Introduction13

Urban heat islands impact human health and cause socioeconomic disturbances [1, 2]. It is estimated14

that more than 8,000 premature deaths were attributed to elevated summer temperatures and prolonged15

heat waves from 1979 to 1999 in the US [1]. Other issues such as excessive energy consumption also16

arise [3]. As a consequence, a number of mitigation strategies have been proposed [1, 4, 5, 6]. To17

quantify the effects of the built environment on micro climate and other environmental impacts, many18

urban-scale environmental sensing initiatives are being developed [7, 8, 9, 10, 11]. These projects19

measure block-by-block micro-climate quantities to inform better green infrastructure investment,20

transportation planning and energy-saving designs. However, low-cost environmental sensors that21

facilitate dense instrumentation of urban communities are prone to errors, outliers, and missing data.22

Current approaches to clean the datasets prior to interpretation are often limited in functionality for23

which anomalies or missing data are independently addressed [12, 13, 14].24

The main contribution of this work is to introduce a robust tensor factorization algorithm to automat-25

ically correct errors and impute missing data common to large distributed urban sensor networks26

(Section 2). We show that the proposed method is able to automatically correct outliers and impute27

missing data while preserving the normal variations of the dataset.28

Two experiments (Section 3) demonstrate the approach. The first experiment begins with a com-29

plete (no missing data) National Oceanic and Atmospheric Administration (NOAA) temperature30

dataset [15], which is artificially degraded by injecting known outliers and also by removing some31

entries to simulate missing data. We demonstrate that the proposed tensor factorization approach cor-32

rectly identifies the outliers and recovers accurate values for the missing data. The second experiment33

applies the method to the raw and incomplete temperature data from the Array of Things (AoT) urban34

sensing platform in Chicago, IL [16]. The recovered temperature data is validated by comparing to35

nearby NOAA readings when applicable, and the resulting clean data is available [17].36
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2 Tensor factorization37

We briefly summarize our tensor factorization approach to remove outliers and impute missing data.38

We organize the raw data in a multi-dimensional array known as a tensor, which is a higher order39

generalization of a matrix. E.g., a third order tensor storing temperature data might arrange the40

timeseries data such that the first mode corresponds to each sensor, the second mode to each hour in a41

24-hour period, and the third mode to each 24-hour period in the dataset.42

Tensor factorization approaches [18, 19] exploit the fact that many large, noisy, and incomplete43

datasets actually have low intrinsic dimensionality. Assuming outliers appear sparsely in the raw44

data, we can reconstruct the underlying true complete data. Letting B ∈ RI1×I2×...×IN denote the45

raw data tensor, our approach recovers a low dimensional tensor X (measured by the Tucker rank of46

the tensor [20]) containing the clean complete data, and a sparse (i.e., mostly zero entries) outlier47

tensor E , such that B = X + E on the entries of B that are observed.48

Recovering a low rank X and sparse outlier E from a corrupt B can be posed as a convex program:49

min
X ,E,O

N∑
i=1

‖X(i)‖∗ + λ‖E(2)‖2,1

s.t. B = X + E +O,
OΩ = 0.

(1)

The objective function in problem (1) balances the tensor rank of X , with the sparsity of the outliers50

E via λ, which is set according to [21, 22]. The term
∑

i ‖X(i)‖∗ is a convex relaxation of the tensor51

rank of X , where X(i) is the mode-i matrix unfolding of X , and ‖ · ‖∗ denotes the nuclear norm [19].52

The l2,1 norm ‖ · ‖2,1 imposes a specific sparsity pattern on the outlier tensor E , namely encouraging53

outliers to persist across one of the orders of the tensor [23]. For example, it can be used to model54

the observation that some sensors degrade and produce faulty data for extended periods of time. A55

compensation tensor O, which is zero for entries in the observation set Ω, and free otherwise, is used56

to handle missing entries. Problem (1) is solved by singular value thresholding [24, 22] based on the57

alternating direction method of multipliers (ADMM) framework [17, 19].58

3 Experiments59

We briefly summarize two experiments in which we apply the proposed tensor factorization method60

to large temperature datasets. The first experiment is a complete NOAA [15] temperature dataset61

that we synthetically degrade, so that the recovery relative error can be computed. In the second62

experiment, we apply the method to Array of Things temperature data which contains missing data63

and outliers. We assess the quality of the recovery by comparing the correlation of AoT data with64

NOAA sensors when they are in close proximity.65

Experiment 1. Synthetically degraded NOAA data. We apply tensor factorization on a complete66

NOAA dataset [15]. We use temperature data from April to September, 2018 recorded from stationary,67

high-end climate sensors located at 14 USCRN monitoring sites [25] in the US Midwest. The68

accessed 14 NOAA sensors record data hourly for 24 hours a day, for 183 days, which is arranged as69

X ∈ R14×24×183. The raw NOAA data is used as the true temperature in this experiment, denoted70

Xtrue, which is to be estimated from a degraded corrupted dataset B.71

To test the factorization method, we generate a synthetically corrupted dataset B from Xtrue that has72

missing data and erroneous values. The volume and structure of the outliers in B is inspired by the73

patterns observed in the AoT dataset used in Experiment 2 below. We degrade the data by randomly74

removing blocks of data ranging between 8-16 days, accounting for a total missing data rate of 15%.75

We randomly modify 2% of the entries to create outlier readings, also clustered in blocks of time.76

Given B, we solve problem (1) with λ = 0.345, where the decision variable X at optimality is the77

recovered dataset X̂ . We compare the quality of the recovered dataset X̂ to the true dataset Xtrue78

by computing the relative error, RE = ‖Xtrue−X̂‖F
‖Xtrue‖F , where ‖ · ‖F is the tensor Frobenius norm. The79

results are summarized in Table 1. The relative error of X̂ computed on all entries of the dataset80

is reduced from 15.84% in the corrupted dataset B to 3.85% in the recovered data. Restricted to81
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Figure 1: Voronoi heat maps (in ◦C) at 3PM from Aug. 23 to 28, 2018 produced by raw (top) and
recovered (bottom) ambient air temperature data. Each dot marks an active AoT unit. Missing entries
are highlighted in black (top).

Table 1: Performance summary. B denotes the raw corrupted data, and X̂ is the recovered data.
Relative error (RE) reported for the NOAA experiment where Xtrue is known; the Pearson correlation
coefficient r between AoT and NOAA when a nearby NOAA sensor is present.

NOAA experiment Array of Things experiment

REuncorrupted REoutliers REmissing REmean rpresent rmissing

B 0 114% - 15.84% 0.883 -
X̂ 3.26% 6.87% 5.82% 3.85% 0.888 0.930

only the missing data entries, the relative error of X̂ is 5.82%, demonstrating the method is able to82

accurately impute missing data even when sensors report no data for long periods of time. Similarly,83

the relative error on the entries that are identified as outliers by the method (i.e., the nonzero entries84

of E) has a low error of 6.87%, down from 114% on the same entries in the corrupt data tensor B. We85

note that the zero relative error of B on the uncorrupted entries is an artifact of the fact that B was86

created directly from Xtrue. The precision and recall of the outlier entries are both 1.87

Experiment 2. Array of Things data. The method is next applied to Array of Things, a dense urban88

sensor network in Chicago [7] that collects real-time data on urban environment, infrastructure, and89

activity for research and public use. We construct an AoT temperature tensor as X ∈ R345×24×183,90

representing 345 temperature sensors aggregated hourly, for 24 hours a day and for 183 days, matching91

the period of the NOAA data. Problem (1) is solved with λ = 0.345. Approximately 15% of the AoT92

data is missing in this period, and the outlier rate identified by our algorithm is about 1%.93

Due to the lack of a ground truth dataset in this experiment, each AoT sensor is quantitatively94

compared to its closest NOAA sensor. Because the temperature field is spatially varying, we use95

the Pearson correlation coefficient to quantify the agreement between recovered AoT temperature96

readings and the nearest NOAA sensor. Figure 1 shows temperature variation in Chicago near a hot97

period on Aug 26-27 in the raw and recovered dataset. The quantitative results (Table 1), show that98

there is generally a high correlation on the AoT data that is present (rpresent) before and after recovery.99

The correlation coefficient of the imputed missing data is rmissing = 0.930, indicating the method100

successfully imputes the missing temperature data.101

Discussion & Conclusion. We proposed a method to automatically clean environmental data on102

two temperature datasets using tensor factorization. Our next steps are to create improved validation103

datasets for AoT to more rigorously quantify the quality of the recovery. We are also interested to104

extend the approach to accommodate other environmental sensors co-located on the AoT platform.105

Ultimately the cleaned data will assist its use by city planners and urban scientists interested in106

neighborhood-specific heat mitigation strategies to reduce adverse impacts [26].107
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